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TL;DR: Density Matrix and State Vector are the two mathematical arenas for doing
calculations based on the postulates of QM. In this note we discuss intrinsic characteristics of
Density Matrix, and its relation with quantum computation. Density operator and Density
matrix are used interchangeably in the text.

Postulates of Quantum Mechanics, Recasted
In the State Vector Formalism(SVF), we use state vector , which lives on inner product
space , to describe status of an isolated quantum system. And the evolution of such a
system is described by Schrodinger Eqn.:

where  is the Hamiltonian of the system. The state at ,  and  at  are related by
unitary operator , i.e.,

With this, we dive into the Density Matrix Formalism(DMF), in which the "states" of a
quantum system is described by a matrix  with  being a possible pure state of the
quantum system in SVF. The pure states in SVF are the ones we already know, like the eigen-
states of 1D/2D/3D potential well. DMF assigns each possible state(matrix) a probability 

, and the collection of  is referred as the ensemble of pure states. With
this, the density operator is defined as

where  is the dimension of some Hilbert space that Hamiltonian of the quantum system acts
on. From elementary statistical theory, we have . The pure state in DMF is made of
only one of the "state", i.e.,

With this, we define mixed state of a quantum system as
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With these definitions, we can see that

and

As an analogue to Eqn.(2) in DMF, we now relate the states at two consecutive time instances,
, by using the following,

Eqn.(6) gives a way to describe the evolution of a quantum system in DMF. We now need a
way to describe the measurement applied on quantum systems in DMF. Assume that the
system of our interest is initially at state of , on which we apply a measurement operator 

. The subscript here is the index of a possible outcome of such a measurement. The
conditional possibility of getting the outcome  when the state is then

The last equality can be seen by writing out the trace of  as

Since  is an orthonormal basis, we must have Eqn.(7). With  and  from (5), the
possibility of getting  from a mixed state is then

After the measurement , we get a new ensemble of states . The corresponding
density operator is then become

Note that , we substitute (7) and (8) into (9) to give
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tr(ρ2) < 1 for mixed state

tr(ρ2) = 1 for pure state.
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In the context of quantum computing, if we have some noises in the system right after the
measurement, we lose the result  of our measurement. Then our quantum system might be
at the mixed state  with probability of . In such a case, we get a mixture of different
density operators as

We are now at a good position to recast the postulates of QM as the following(from Mike
and Ike):

1. Associated to any isolated physical system is a complex vector space with inner product
(that is, a Hilbert space) known as the state space of the system. The system is
completely described by its density operator, which is a positive operator  with trace
one, acting on the state space of the system. If a quantum system is in the state  with
probability , then the density operator for the system is .

2. The evolution of a closed quantum system is described by a unitary transformation.
That is, the state  of the system at time  is related to the state  of the system at
time  by a unitary operator  which depends only on the times  and 

3. Quantum measurements are described by a collection  of measurement
operators. These are operators acting on the state space of the system being measured.
The index  refers to the measurement outcomes that may occur in the experiment. If
the state of the quantum system is  immediately before the measurement then the
probability that result  occurs is given by

and the state of the system after the measurement is

The measurement operators satisfy the completeness equation,
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4. The state space of a composite physical system is the tensor product of the state spaces
of the component physical systems. Moreover, if we have systems numbered 1 through 

, and system number  is prepared in the state , then the joint state of the total
system is .

General properties of density matrix

A density matrix must have the following properties:

 is a positive matrix

Bloch sphere for mixed states(Exercise 2.72 from
Mike&Ike)
Show that an arbitrary density matrix for a mixed state qubit may be written as

where  is a real three-dimensional vector such that . This vector is known as the
Bloch vector for the state .

The pure state in SVF can be represented by unit vector on the Bloch sphere, with its
expression being:

So, the pure state in DMF is then

And we have here . Let ,  should be in a form of

To make it work, we must have
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With these, it can be shown that . For a mixed state, we have . Using
state vector definition of , the density matrix is now

Let  to be the Bloch vector for pure state , so we have

Because , the matrix above can be represented as

Since , we now understand that the mixed state is represented
by a vector  that has its head inside Bloch sphere.

Unitary freedom in the ensemble for density matrices
The theorem of unitary freedom is stated as: the sets  and  generate the same

density matrix if and only if

where  is a unitary matrix of complex numbers, with indices  and , and we 'pad'
whichever set of vectors  or  is smaller with additional vectors 0 so that the two sets

have the same number of elements.

As a consequence of the theorem, note that  for normalized
states  and probability distributions  and  if and only if

Let  be the unitary matrix with its element being , and we see the two sets are related as

Exercise 2.73 from Mike and Ike: Let  be a density operator. A minimal ensemble for  is an
ensemble  containing a number of elements equal to the rank of . Let  be any
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state in the support of . (The support of a Hermitian operator  is the vector space spanned
by the eigenvectors of  with non-zero eigenvalues.) Show that there is a minimal ensemble
for  that contains , and moreover that in any such ensemble  must appear with
probability

where  is defined to be the inverse of , when  is considered as an operator acting only
on the support of . (This definition removes the problem that  may not have an inverse.)

SOLUTION: From spectral theorem, density matrix  is decomposed as 
where  . Without loss of generality, we can assume  for  where 

 and  for . Thus , where 
. For any state vector , we can write

Because state vectors are unit vectors, we have . To find the minimal ensemble
that contains , we construct a new set  that shares the same unitary freedom with 

. To do so, we must find the unitary matrix that relates the two sets(eqn.13). Notice that
if  is in the minimal ensemble, we can associate it with a probability . From (15), we have

If we let , and to make the row vector  normalized, we have

Using Gram-Schmit procedure, we can construct the unitary matrix  as

Because the row vectors in the matrix above are orthonormal, we have . From (16)
we find other members in the minimal ensemble through the following relation:
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So that

To obtain (14), we notice that , and use (15), we can show that

as indicated in (17).
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