status: \#ongoing
Author: Sizhe Liu
Date: 2022-09-11
tags: Quantum Mechanics - \#quantumMechanics - State Vector Formalism
TL;DR: Density Matrix and State Vector are the two mathematical arenas for doing calculations based on the postulates of QM. In this note we discuss intrinsic characteristics of Density Matrix, and its relation with quantum computation. Density operator and Density matrix are used interchangeably in the text.

Postulates of Quantum Mechanics, Recasted

In the State Vector Formalism(SVF), we use state vector $|\phi\rangle$, which lives on inner product space V, to describe status of an isolated quantum system. And the evolution of such a system is described by Schrodinger Eqn.:

$$
\begin{equation*}
i \hbar \frac{\partial|\phi\rangle}{\partial t}=\mathcal{H}|\phi\rangle \tag{1}
\end{equation*}
$$

where \mathcal{H} is the Hamiltonian of the system. The state at $t_{1},\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ at t_{2} are related by unitary operator U, i.e.,

$$
\begin{equation*}
\left|\phi_{2}\right\rangle=U\left|\phi_{1}\right\rangle \tag{2}
\end{equation*}
$$

With this, we dive into the Density Matrix Formalism(DMF), in which the "states" of a quantum system is described by a matrix $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ with ϕ_{i} being a possible pure state of the quantum system in SVF. The pure states in SVF are the ones we already know, like the eigenstates of 1D/2D/3D potential well. DMF assigns each possible state(matrix) a probability $p_{i} \in(0,1]$, and the collection of $\left\{p_{i},\left|\phi_{i}\right\rangle\right\}$ is referred as the ensemble of pure states. With this, the density operator is defined as

$$
\begin{equation*}
\rho=\sum_{i}^{d} p_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \tag{3}
\end{equation*}
$$

where d is the dimension of some Hilbert space that Hamiltonian of the quantum system acts on. From elementary statistical theory, we have $\sum_{i} p_{i}=1$. The pure state in DMF is made of only one of the "state", i.e.,

$$
\begin{equation*}
\rho=|\phi\rangle\langle\phi| \tag{4}
\end{equation*}
$$

With this, we define mixed state of a quantum system as

$$
\begin{equation*}
\rho=\sum_{i}^{l \leq d} p_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| . \tag{5}
\end{equation*}
$$

With these definitions, we can see that

$$
\operatorname{tr}\left(\rho^{2}\right)<1 \quad \text { for mixed state }
$$

and

$$
\operatorname{tr}\left(\rho^{2}\right)=1 \quad \text { for pure state. }
$$

As an analogue to Eqn.(2) in DMF, we now relate the states at two consecutive time instances, t_{1} and t_{2}, by using the following,

$$
\begin{equation*}
\rho_{\left(t=t_{2}\right)}=\sum_{i} p_{i} U\left|\phi_{i}\left(t_{1}\right)\right\rangle\left\langle\phi_{i}\left(t_{1}\right)\right| U^{\dagger}=U \rho_{\left(t=t_{1}\right)} U^{\dagger} . \tag{6}
\end{equation*}
$$

Eqn.(6) gives a way to describe the evolution of a quantum system in DMF. We now need a way to describe the measurement applied on quantum systems in DMF. Assume that the system of our interest is initially at state of $\left|\phi_{i}\right\rangle$, on which we apply a measurement operator M_{m}. The subscript here is the index of a possible outcome of such a measurement. The conditional possibility of getting the outcome m when the state is then

$$
\begin{equation*}
p(m \mid i)=\left\langle\phi_{i}\right| M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle=\operatorname{tr}\left(M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right) . \tag{7}
\end{equation*}
$$

The last equality can be seen by writing out the trace of $M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ as

$$
\left.\operatorname{tr}\left(M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)=\sum_{i}\langle i| M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i} \mid i\right\rangle=\left\langle\phi_{i}\right|\left(\sum_{i}|i\rangle\langle i|\right)\left|M_{m}^{\dagger} M_{m}\right| \phi_{i}\right\rangle
$$

Since $|i\rangle$ is an orthonormal basis, we must have Eqn.(7). With $p(m \mid i)$ and p_{i} from (5), the possibility of getting m from a mixed state is then

$$
\begin{equation*}
p(m)=\sum_{i} p(m \mid i) p_{i}=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \sum_{i} p_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right) . \tag{8}
\end{equation*}
$$

After the measurement M_{m}, we get a new ensemble of states $\left|\phi_{i}^{m}\right\rangle$. The corresponding density operator is then become

$$
\begin{equation*}
\rho_{m}=\sum_{i} p(i \mid m)\left|\phi_{i}^{m}\right\rangle\left\langle\phi_{i}^{m}\right|=\sum_{i} p(i \mid m) \frac{M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| M_{m}^{\dagger}}{\left\langle\phi_{i}\right| M_{m}^{\dagger} M_{m}\left|\phi_{i}\right\rangle} . \tag{9}
\end{equation*}
$$

Note that $p(i \mid m)=p(i, m) / p(m)=p(m \mid i) p_{i} / p(m)$, we substitute (7) and (8) into (9) to give

$$
\begin{equation*}
\rho_{m}=\sum_{i} p_{i} \frac{M_{m}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)}=\frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)} . \tag{10}
\end{equation*}
$$

In the context of quantum computing, if we have some noises in the system right after the measurement, we lose the result m of our measurement. Then our quantum system might be at the mixed state ρ_{m} with probability of $p(m)$. In such a case, we get a mixture of different density operators as

$$
\begin{equation*}
\sum_{m} p(m) \rho_{m}=\sum_{m} M_{m} \rho M_{m}^{\dagger} . \tag{11}
\end{equation*}
$$

We are now at a good position to recast the postulates of QM as the following(from Mike and Ike):

1. Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its density operator, which is a positive operator ρ with trace one, acting on the state space of the system. If a quantum system is in the state ρ_{i} with probability p_{i}, then the density operator for the system is $\sum_{i} p_{i} \rho_{i}$.
2. The evolution of a closed quantum system is described by a unitary transformation. That is, the state ρ of the system at time t_{1} is related to the state ρ^{\prime} of the system at time t_{2} by a unitary operator U which depends only on the times t_{1} and t_{2}

$$
\rho^{\prime}=U \rho U^{\dagger}
$$

3. Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The index m refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is ρ immediately before the measurement then the probability that result m occurs is given by

$$
p(m)=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
$$

and the state of the system after the measurement is

$$
\frac{M_{m} \rho M_{m}^{\dagger}}{\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)}
$$

The measurement operators satisfy the completeness equation,

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I
$$

4. The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state ρ_{i}, then the joint state of the total system is $\rho_{1} \otimes \rho_{2} \otimes \ldots \rho_{n}$.

General properties of density matrix

A density matrix must have the following properties:

- $\operatorname{tr}(\rho)=1$
- ρ is a positive matrix

Bloch sphere for mixed states(Exercise 2.72 from Mike\&lke)

Show that an arbitrary density matrix for a mixed state qubit may be written as

$$
\rho=\frac{I+\vec{r} \cdot \vec{\sigma}}{2},
$$

where \vec{r} is a real three-dimensional vector such that $\|\vec{r}\| \leq 1$. This vector is known as the Bloch vector for the state ρ.

The pure state in SVF can be represented by unit vector on the Bloch sphere, with its expression being:

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle
$$

So, the pure state in DMF is then
$\rho=|\psi\rangle\langle\psi|=\left[\begin{array}{cr}\cos ^{2}(\theta / 2) & \cos (\phi) \cos (\theta / 2) \sin (\theta / 2)-i \text { si } \\ \cos (\phi) \cos (\theta / 2) \sin (\theta / 2)+i \sin (\phi) \cos (\theta / 2) \sin (\theta / 2) & 1-\cos ^{2}(\theta,\end{array}\right.$
And we have here $\operatorname{tr}(\rho)=1$. Let $\vec{r}=\left(r_{1}, r_{2}, r_{3}\right)^{T}, \rho$ should be in a form of

$$
\frac{1}{2}\left[\begin{array}{cc}
1+r_{3} & r_{1}-i r_{2} \\
r_{1}+i r_{2} & 1-r_{3}
\end{array}\right]
$$

To make it work, we must have

$$
\begin{gathered}
2 \cos ^{2}(\theta / 2)=1+r_{3} \\
r_{3}=2 \cos ^{2}(\theta / 2)-1 \\
r_{1}=2 \cos (\phi) \cos (\theta / 2) \sin (\theta / 2) \\
r_{2}=2 \sin (\phi) \cos (\theta / 2) \sin (\theta / 2)
\end{gathered}
$$

With these, it can be shown that $|r|=1$. For a mixed state, we have $\rho=\sum p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$. Using state vector definition of $\left|\phi_{i}\right\rangle_{\text {, the density matrix is now }}$
$\rho=\left[\begin{array}{cc}\sum_{k} p_{k} \cos ^{2}\left(\theta_{k} / 2\right) & \sum_{k} p_{k} \cos \left(\phi_{k}\right) \cos (\theta . \\ \sum_{k} p_{k} \cos \left(\phi_{k}\right) \cos \left(\theta_{k} / 2\right) \sin \left(\theta_{k} / 2\right)+\sum_{k} p_{k} i \sin \left(\phi_{k}\right) \cos \left(\theta_{k} / 2\right) \sin \left(\theta_{k} / 2\right) & \end{array}\right.$
Let $\vec{r}_{k}=\left(r_{k 1}, r_{k 2}, r_{k 3}\right)^{T}$ to be the Bloch vector for pure state $\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$, so we have

$$
\begin{gathered}
r_{k 3}=2 \cos ^{2}\left(\theta_{k} / 2\right)-1 \\
r_{k 1}=2 \cos \left(\phi_{k}\right) \cos \left(\theta_{k} / 2\right) \sin \left(\theta_{k} / 2\right) \\
r_{k 2}=2 \sin \left(\phi_{k}\right) \cos \left(\theta_{k} / 2\right) \sin \left(\theta_{k} / 2\right)
\end{gathered}
$$

Because $\sum_{k} p_{k}=1$, the matrix above can be represented as

$$
\rho=\left[\begin{array}{cc}
\frac{1}{2} \sum_{k} p_{k}\left(1+r_{k 3}\right) & \frac{1}{2} \sum_{k} p_{k}\left(r_{k 1}-i r_{k 2}\right) \\
\frac{1}{2} \sum_{k} p_{k}\left(r_{k 1}+i r_{k 2}\right) & \frac{1}{2} \sum_{k} p_{k}\left(1-r_{k 3}\right)
\end{array}\right]=\frac{I+\sum_{k} p_{k} \vec{r}_{k} \cdot \sigma}{2}
$$

Since $\left\|\sum_{k} p_{k} \vec{r}_{k}\right\| \leq \sum_{k} p_{i}| | \vec{r}_{k} \|=1$, we now understand that the mixed state is represented by a vector $\sum_{k} p_{k} \vec{r}_{k}$ that has its head inside Bloch sphere.

Unitary freedom in the ensemble for density matrices

The theorem of unitary freedom is stated as: the sets $\left\{\left|\tilde{\psi}_{i}\right\rangle\right\}$ and $\left\{\left|\tilde{\varphi}_{j}\right\rangle\right\}$ generate the same density matrix if and only if

$$
\begin{equation*}
\left|\tilde{\psi}_{i}\right\rangle=\sum_{j} u_{i j}\left|\tilde{\varphi}_{j}\right\rangle \tag{12}
\end{equation*}
$$

where $u_{i j}$ is a unitary matrix of complex numbers, with indices i and j, and we 'pad' whichever set of vectors $\left|\tilde{\psi}_{i}\right\rangle$ or $\left|\tilde{\varphi}_{j}\right\rangle$ is smaller with additional vectors 0 so that the two sets have the same number of elements.

As a consequence of the theorem, note that $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\sum_{j} q_{j}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|$ for normalized states $\left|\psi_{i}\right\rangle,\left|\varphi_{j}\right\rangle$ and probability distributions p_{i} and q_{j} if and only if

$$
\sqrt{p_{i}}\left|\psi_{i}\right\rangle=\left|\tilde{\psi}_{i}\right\rangle=\sum_{j} u_{i j} \sqrt{q_{j}}\left|\varphi_{j}\right\rangle .
$$

Let U be the unitary matrix with its element being $u_{i j}$, and we see the two sets are related as

$$
\begin{equation*}
\left[\left|\tilde{\psi}_{1}\right\rangle \cdots\left|\tilde{\psi}_{k}\right\rangle\right]=\left[\left|\tilde{\varphi}_{1}\right\rangle \cdots\left|\tilde{\varphi}_{k}\right\rangle\right] U^{T} . \tag{13}
\end{equation*}
$$

Exercise 2.73 from Mike and Ike: Let ρ be a density operator. A minimal ensemble for ρ is an ensemble $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ containing a number of elements equal to the rank of ρ. Let $|\psi\rangle$ be any
state in the support of ρ. (The support of a Hermitian operator A is the vector space spanned by the eigenvectors of A with non-zero eigenvalues.) Show that there is a minimal ensemble for ρ that contains $\left|\psi_{i}\right\rangle$, and moreover that in any such ensemble $\left|\psi_{i}\right\rangle$ must appear with probability

$$
\begin{equation*}
p_{i}=\frac{1}{\left\langle\psi_{i}\right| \rho^{-1}\left|\psi_{i}\right\rangle} \tag{14}
\end{equation*}
$$

where ρ^{-1} is defined to be the inverse of ρ, when ρ is considered as an operator acting only on the support of ρ. (This definition removes the problem that ρ may not have an inverse.)

SOLUTION: From spectral theorem, density matrix ρ is decomposed as $\rho=\sum_{k=1}^{d} \lambda_{k}|k\rangle\langle k|$ where $d=\operatorname{dim} \mathcal{H}$. Without loss of generality, we can assume $p_{k}>0$ for $k=1 \cdots, l$ where $l=\operatorname{rank}(\rho)$ and $p_{k}=0$ for $k=l+1, \cdots, d$. Thus $\rho=\sum_{k=1}^{l} p_{k}|k\rangle\langle k|=\sum_{k=1}^{l}|\tilde{k}\rangle\langle\tilde{k}|$, where $|\tilde{k}\rangle=\sqrt{\lambda_{k}}|k\rangle$. For any state vector $\left|\psi_{i}\right\rangle$, we can write

$$
\begin{equation*}
\left|\psi_{i}\right\rangle=\sum_{k=1}^{l} c_{i k}|k\rangle . \tag{15}
\end{equation*}
$$

Because state vectors are unit vectors, we have $\sum_{k}\left|c_{i k}\right|^{2}=1$. To find the minimal ensemble that contains $\left|\psi_{i}\right\rangle$, we construct a new set $\left\{\left|\psi_{i}\right\rangle\right\}$ that shares the same unitary freedom with $\{|k\rangle\}$. To do so, we must find the unitary matrix that relates the two sets(eqn.13). Notice that if $\left|\psi_{i}\right\rangle$ is in the minimal ensemble, we can associate it with a probability p_{i}. From (15), we have

$$
\begin{equation*}
\left|\tilde{\psi}_{i}\right\rangle=\sum_{k}^{l} \frac{\sqrt{p_{i}} c_{i k}}{\sqrt{\lambda_{k}}}|\tilde{k}\rangle . \tag{16}
\end{equation*}
$$

If we let $u_{i k}=\frac{\sqrt{p_{c_{i k}}}}{\sqrt{\lambda_{k}}}$, and to make the row vector $\vec{u}_{i}=\left[u_{i 1}, u_{i 2}, \ldots u_{i]}\right]$ normalized, we have

$$
\begin{equation*}
p_{i} \sum_{k}^{l} \frac{\left|c_{i k}\right|^{2}}{\lambda_{k}}=1 \rightarrow p_{i}=\frac{1}{\sum_{k}^{l} \frac{\left|c_{i k}\right|^{2}}{\lambda_{k}}} . \tag{17}
\end{equation*}
$$

Using Gram-Schmit procedure, we can construct the unitary matrix U as

$$
U=\left[\begin{array}{c}
\vec{u}_{1} \\
\vdots \\
\vec{u}_{i} \\
\vdots \\
\vec{u}_{l}
\end{array}\right]
$$

Because the row vectors in the matrix above are orthonormal, we have $U^{\dagger} U=I$. From (16) we find other members in the minimal ensemble through the following relation:

$$
\begin{equation*}
\left[\left|\tilde{\psi}_{1}\right\rangle \cdots\left|\tilde{\psi}_{i}\right\rangle \cdots\left|\tilde{\psi}_{l}\right\rangle\right]=\left[\left|\tilde{k}_{1}\right\rangle \cdots\left|\tilde{k}_{l}\right\rangle\right] U^{T} \tag{18}
\end{equation*}
$$

So that

$$
\begin{gathered}
\sum_{i}\left|\tilde{\psi}_{i}\right\rangle\left\langle\tilde{\psi}_{i}\right|=\left[\left|\tilde{\psi}_{1}\right\rangle \cdots\left|\tilde{\psi}_{k}\right\rangle\right]\left[\begin{array}{c}
\left\langle\tilde{\psi}_{1}\right| \\
\vdots \\
\left\langle\tilde{\psi}_{k}\right|
\end{array}\right] \\
=\left[\left|\tilde{k}_{1}\right\rangle \cdots\left|\tilde{k}_{k}\right\rangle\right] U^{T} U^{*}\left[\begin{array}{c}
\left\langle\tilde{k}_{1}\right| \\
\vdots \\
\left\langle\tilde{k}_{k}\right|
\end{array}\right] \\
=\left[\left|\tilde{k}_{1}\right\rangle \cdots\left|\tilde{k}_{k}\right\rangle\right]\left[\begin{array}{c}
\left.\left\langle\tilde{k}_{1}\right|\right] \\
\vdots \\
\left\langle\tilde{k}_{k}\right|
\end{array}\right] \\
=\sum_{j}\left|\tilde{k}_{j}\right\rangle\left\langle\tilde{k}_{j}\right|
\end{gathered}
$$

To obtain (14), we notice that $\rho^{-1}=\sum_{k} \frac{1}{\lambda_{k}}|k\rangle\langle k|$, and use (15), we can show that

$$
\left\langle\psi_{i}\right| \rho^{-1}\left|\psi_{i}\right\rangle=\sum_{k}^{l} \frac{\left|c_{i k}\right|^{2}}{\lambda_{k}}=1 / p_{i}
$$

as indicated in (17).

